Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.124
1.
Anal Chem ; 96(18): 7030-7037, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656919

Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.


DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , Fluorescence Resonance Energy Transfer , MicroRNAs , Humans , MicroRNAs/analysis , MicroRNAs/metabolism , DNA/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Neoplasms/diagnostic imaging , Optical Imaging
2.
Biosens Bioelectron ; 256: 116278, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38608497

The DNA-based logic circuit, constructed to mimic biochemical reaction networks, is highly significant in detecting biomarkers at the molecular level. The differences in the expression levels of microRNAs (miRNAs) within different types of cells provide hope for distinguishing cell subtypes. However, reliance on a single miRNA often leads to unreliable results. Herein, we constructed an enzyme-triggered cascade logic circuit based on the AND gate, which is capable of generating corresponding fluorescence signals in the presence of target miRNAs. The introduction of apurinic/apyrimidinic (AP) sites effectively reduces the likelihood of false signal generation. Amplification of the fluorescence signal relies on the catalytic hairpin assembly and the repetitive reuse of the multicomponent nucleic acid enzyme (MNAzyme). We demonstrated that the logic circuit can not only distinguish cancer cells from normal cells but also identify different types of cancer cells. The programmability of the logic circuits and the simplicity of the assay system allow us to modify the functional sequences to recognize different types of biomarkers, thus providing a reference for the identification of various cell subtypes.


Biosensing Techniques , DNA , MicroRNAs , Humans , Biosensing Techniques/methods , MicroRNAs/genetics , DNA/genetics , DNA/chemistry , Neoplasms/genetics , Computers, Molecular , Cell Line, Tumor , Biomarkers, Tumor/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
3.
Anal Chem ; 96(17): 6609-6617, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38639728

Complex structures and devices, both natural and artificial, can often undergo assembly and disassembly. Assembly and disassembly allow multiple stimuli to initiate, for example, the assembly and disassembly of primary cilia under the control of E3 ubiquitin ligases and deubiquitinases. Although biology relies on such schemes, they are rarely available in materials science. Here, we demonstrate a DNA-functionalized colloidal Au response to endogenous biomarkers to trigger simultaneous assembly and disassembly techniques. Colloidal Au is initially inert because the starting DNA strands are paired and prehybridized. TK1 mRNA competes to bind one of the paired strands and release its complement. The released complement binds to the next colloidal Au to initiate assembly, and APE1 can shear the colloidal Au assembly binding site to initiate disassembly. Our strategy provides temporal and spatial logic control during colloidal Au assembly and disassembly, and this simultaneous assembly and disassembly process can be used for sequential detection and cellular imaging of two biomarkers, effectively reducing signal false-positive results and shortening detection time. This work highlights biomarker-controlled colloidal Au simultaneous assembly and disassembly in ways that are simple and versatile, with the potential to enrich the application scope of DNA nanotechnology and provide an idea for the application of precision medicine testing.


DNA , Thymidine Kinase , Humans , DNA/chemistry , DNA/metabolism , Biomarkers/metabolism , Biomarkers/analysis , RNA, Messenger/metabolism , Colloids/chemistry , Gold/chemistry , Gold Colloid/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
4.
Redox Biol ; 72: 103135, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565069

Cutaneous melanoma, a lethal skin cancer, arises from malignant transformation of melanocytes. Solar ultraviolet radiation (UVR) is a major environmental risk factor for melanoma since its interaction with the skin generates DNA damage, either directly or indirectly via oxidative stress. Pheomelanin pigments exacerbate oxidative stress in melanocytes by UVR-dependent and independent mechanisms. Thus, oxidative stress is considered to contribute to melanomagenesis, particularly in people with pheomelanic pigmentation. The melanocortin 1 receptor gene (MC1R) is a major melanoma susceptibility gene. Frequent MC1R variants (varMC1R) associated with fair skin and red or yellow hair color display hypomorphic signaling to the cAMP pathway and are associated with higher melanoma risk. This association is thought to be due to production of photosensitizing pheomelanins as well as deficient induction of DNA damage repair downstream of varMC1R. However, the data on modulation of oxidative DNA damage repair by MC1R remain scarce. We recently demonstrated that varMC1R accelerates clearance of reactive oxygen species (ROS)-induced DNA strand breaks in an AKT-dependent manner. Here we show that varMC1R also protects against ROS-dependent formation of 8-oxodG, the most frequent oxidative DNA lesion. Since the base excision repair (BER) pathway mediates clearance of these DNA lesions, we analyzed induction of BER enzymes in human melanoma cells of varMC1R genotype. Agonist-mediated activation of both wildtype (wtMC1R) and varMC1R significantly induced OGG and APE-1/Ref1, the rate-limiting BER enzymes responsible for repair of 8-oxodG. Moreover, we found that NADPH oxidase (NOX)-dependent generation of ROS was responsible for AKT activation and oxidative DNA damage repair downstream of varMC1R. These observations provide a better understanding of the functional properties of melanoma-associated MC1R alleles and may be useful for the rational development of strategies to correct defective varMC1R responses for efficient photoprotection and melanoma prevention in fair-skinned individuals.


DNA Damage , DNA Repair , Melanoma , Oxidation-Reduction , Oxidative Stress , Receptor, Melanocortin, Type 1 , Signal Transduction , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Humans , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Melanocytes/metabolism
5.
Chem Commun (Camb) ; 60(35): 4695-4698, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38592754

This study presents an innovative method for the highly sensitive detection of apurinic/apyrimidinic endonuclease 1 (APE1), a crucial biomarker and target for cancer diagnosis and treatment. The method is predicated on our discovery that the apurinic or apyrimidinic site (AP site) can inhibit the activity of Taq DNA polymerase. Subsequent experiments further led to the development of a new amplification method based on the digestion activity of Lambda exonuclease. This approach showed potential to detect trace amounts of APE1 in biological samples with high sensitivity.


DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Taq Polymerase/antagonists & inhibitors , Taq Polymerase/metabolism
6.
Anal Chem ; 96(17): 6774-6783, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38634427

The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.


DNA-(Apurinic or Apyrimidinic Site) Lyase , MicroRNAs , MicroRNAs/analysis , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA/chemistry , Cell Line, Tumor
7.
Nucleic Acids Res ; 52(8): e41, 2024 May 08.
Article En | MEDLINE | ID: mdl-38554110

Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.


Cell Nucleolus , Cell Nucleus , DNA Probes , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , DNA Probes/chemistry , HeLa Cells , Molecular Chaperones/metabolism , Avidin/chemistry , Avidin/metabolism , DNA/metabolism , Biotin/chemistry
8.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Article En | MEDLINE | ID: mdl-38492429

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


DNA Polymerase beta , Lyases , Phosphorus-Oxygen Lyases , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Lyases/metabolism , Lysine , DNA Polymerase beta/metabolism , DNA Repair , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors , Mitochondrial Proteins/metabolism
9.
Anal Chem ; 96(11): 4647-4656, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38441540

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.


Metal Nanoparticles , Telomerase , Humans , Telomerase/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry , HeLa Cells , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
10.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436697

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


DNA-(Apurinic or Apyrimidinic Site) Lyase , Ovarian Neoplasms , Stress Granules , Y-Box-Binding Protein 1 , Female , Humans , Endodeoxyribonucleases , Ovarian Neoplasms/genetics , Phosphorylation , Stress Granules/metabolism , Y-Box-Binding Protein 1/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
11.
Cell Death Differ ; 31(4): 431-446, 2024 Apr.
Article En | MEDLINE | ID: mdl-38418695

Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation, has emerged as a promising therapeutic strategy for cancer treatment, particularly in hepatocellular carcinoma (HCC). However, the mechanisms underlying the regulation of ferroptosis in HCC remain to be unclear. In this study, we have identified a novel regulatory pathway of ferroptosis involving the inhibition of Apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme with dual functions in DNA repair and redox regulation. Our findings demonstrate that inhibition of APE1 leads to the accumulation of lipid peroxidation and enhances ferroptosis in HCC. At the molecular level, the inhibition of APE1 enhances ferroptosis which relies on the redox activity of APE1 through the regulation of the NRF2/SLC7A11/GPX4 axis. We have identified that both genetic and chemical inhibition of APE1 increases AKT oxidation, resulting in an impairment of AKT phosphorylation and activation, which leads to the dephosphorylation and activation of GSK3ß, facilitating the subsequent ubiquitin-proteasome-dependent degradation of NRF2. Consequently, the downregulation of NRF2 suppresses SLC7A11 and GPX4 expression, triggering ferroptosis in HCC cells and providing a potential therapeutic approach for ferroptosis-based therapy in HCC. Overall, our study uncovers a novel role and mechanism of APE1 in the regulation of ferroptosis and highlights the potential of targeting APE1 as a promising therapeutic strategy for HCC and other cancers.


Carcinoma, Hepatocellular , DNA-(Apurinic or Apyrimidinic Site) Lyase , Ferroptosis , Liver Neoplasms , Humans , Ferroptosis/drug effects , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Cell Line, Tumor , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mice , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/genetics , Mice, Nude , Lipid Peroxidation/drug effects , Signal Transduction/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
12.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38366780

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


DNA Ligase ATP , DNA Polymerase beta , DNA Repair , DNA Polymerase beta/metabolism , DNA Polymerase beta/genetics , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA/metabolism , DNA/genetics , DNA Damage , DNA Ligases/metabolism , DNA Ligases/genetics , Excision Repair
13.
Chem Res Toxicol ; 37(2): 395-406, 2024 02 19.
Article En | MEDLINE | ID: mdl-38181204

The reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing N-terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA. NMR and MALDI-TOF-MS analyses provided evidence that the reaction generated a thiazolidine product. Conversion of an AP site to a thiazolidine-AP adduct protected against the rapid cleavage normally induced at AP sites by the endonuclease action of the enzyme APE1 and the AP-lyase activity of the biogenic amine spermine. In the presence of excess 1,2-aminothiols, the thiazolidine-AP adducts underwent slow strand cleavage via a ß-lyase reaction that generated products with 1,2-aminothiol-modified sugar residues on the 3'-end of the strand break. In the absence of excess 1,2-aminothiols, the thiazolidine-AP adducts dissociated to release the parent AP-containing oligonucleotide. The properties of the thiazolidine-AP adducts described here mirror critical properties of SRAP proteins HMCES and YedK that capture AP sites in single-stranded regions of cellular DNA and protect them from cleavage.


Cysteine/analogs & derivatives , DNA Adducts , Cysteamine , DNA Repair , Thiazolidines/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA/chemistry , Peptides , Aldehydes , DNA Damage
14.
Anal Chem ; 96(5): 2117-2123, 2024 02 06.
Article En | MEDLINE | ID: mdl-38268109

Despite the progress that has been made in diverse DNA-based nanodevices to in situ monitor the activity of the DNA repair enzymes in living cells, the significance of improving both the sensitivity and specificity has remained largely neglected and understudied. Herein, we propose a regulatable DNA nanodevice to specifically monitor the activity of DNA repair enzymes for early evaluation of cancer mediated by genomic instability. Concretely, an AND logic gate-regulated DNAzyme nanoflower was rationally designed by the self-assembly of the DNA duplex modified with both apurinic/apyrimidinic (AP) site and methyl lesion site. The DNAzyme nanoflower could be reconfigured under the repair of AP sites and O6-methylguanine sites by apurinic/apyrimidinic endonuclease 1 (APE1) and O6-methylguanine methyltransferase (MGMT) to produce a fluorescent signal, realizing the sensitive monitoring of the activity of APE1 and MGMT. Compared to the free DNAzyme duplex, the fluorescent response of the DNAzyme nanoflower increased by 60%, due to the effective enrichment of the DNA probes by the nanoflower structure. More importantly, we have demonstrated that the dual-enzyme activated strategy allows imaging of specific cancer cells in the AND logic gate manner using MCF-7 as a cancer cell model, improving the specificity of cancer cell imaging. This AND logic gate-regulated multifunctional DNAzyme nanoflower provides a simple tool for simultaneously visualizing multiple DNA repair enzymes, holding great potential in early clinical diagnosis and drug discovery.


DNA Repair , DNA, Catalytic , DNA Damage , DNA Repair Enzymes/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA/chemistry
15.
Anal Chim Acta ; 1291: 342212, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38280781

As an essential protein in DNA repair, apurinic/apyrimidinic endonuclease 1 (APE1) plays multiple critical functions in maintaining homeostasis, making it a significant biomarker and therapeutic target for many disorders. Here, we describe a simple method to detect APE1 based on the Releasing-Extension-Signal amplification Test (REST) strategy that leverages the dsDNA as the activator to fully unlock the trans-cleavage activity of CRISPR/Cas12a. This assay provides a rapid and specific APE1 detection with a detection limit down to 1.05 × 10-5 U/mL. We also combined this method with an automated pipetting platform and a microplate reader for high-throughput screening of potential inhibitors of APE1. Besides, by changing the modification on the probe, the REST strategy was easily repurposed to detect various DNA glycosylases. Taken together, the simplicity and robustness of the method offer a new choice for APE1 detection and inhibitor screening, showing great potential in practical use. Furthermore, the REST strategy devised in this study provides a new example of applying CRISPR/Cas12a signal amplifier to non-nucleic acid biosensing and inhibitor screening, which broadens the CRISPR-Dx toolbox.


CRISPR-Cas Systems , High-Throughput Screening Assays , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endonucleases/metabolism
16.
Biochimie ; 216: 126-136, 2024 Jan.
Article En | MEDLINE | ID: mdl-37806619

Coordination of enzymatic activities in the course of base excision repair (BER) is essential to ensure complete repair of damaged bases. Two major mechanisms underlying the coordination of BER are known today: the "passing the baton" model and a model of preassembled stable multiprotein repair complexes called "repairosomes." In this work, we aimed to elucidate the coordination between human apurinic/apyrimidinic (AP) endonuclease APE1 and DNA polymerase Polß in BER through studying an impact of APE1 on Polß-catalyzed nucleotide incorporation into different model substrates that mimic different single-strand break (SSB) intermediates arising along the BER pathway. It was found that APE1's impact on separate stages of Polß's catalysis depends on the nature of a DNA substrate. In this complex, APE1 removed 3' blocking groups and corrected Polß-catalyzed DNA synthesis in a coordinated manner. Our findings support the hypothesis that Polß not only can displace APE1 from damaged DNA within the "passing the baton" model but also performs the gap-filling reaction in the ternary complex with APE1 according to the "repairosome" model. Taken together, our results provide new insights into coordination between APE1 and Polß during the BER process.


DNA Polymerase beta , Humans , DNA Polymerase beta/metabolism , DNA Repair , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Multiprotein Complexes , DNA/chemistry , Endonucleases/genetics , Endonucleases/metabolism
17.
DNA Repair (Amst) ; 133: 103606, 2024 Jan.
Article En | MEDLINE | ID: mdl-38039951

Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione) is a clinically-relevant synthetic anthracenedione that functions as a topoisomerase II poison by trapping DNA double-strand break intermediates. Mitoxantrone binds to DNA via both stacking interactions with DNA bases and hydrogen bonding with the sugar-phosphate backbone. It has been shown that mitoxantrone inhibits apurinic/apyrimidinic (AP) endonuclease 1 (APE1)-catalyzed incision of DNA containing a tetrahydrofuran (THF) moiety and more recently, that mitoxantrone forms Schiff base conjugates at AP sites in DNA. In this study, mitoxantrone-mediated inhibition of APE1 at THF sites was shown to be consistent with preferential binding to, and thermal stabilization of DNA containing a THF site as compared to non-damaged DNA. Investigations into the properties of mitoxantrone at AP and 3' α,ß-unsaturated aldehyde sites demonstrated that in addition to being a potent inhibitor of APE1 at these biologically-relevant substrates (∼ 0.5 µM IC50 on AP site-containing DNA), mitoxantrone also incised AP site-containing DNA by catalyzing ß- and ß/δ-elimination reactions. The efficiency of these reactions to generate the 3' α,ß-unsaturated aldehyde and 3' phosphate products was modulated by DNA structure. Although these cell-free reactions revealed that mitoxantrone can generate 3' phosphates, cells lacking polynucleotide kinase phosphatase did not show increased sensitivity to mitoxantrone treatment. Consistent with its ability to inhibit APE1 activity on DNAs containing either an AP site or a 3' α,ß-unsaturated aldehyde, combined exposures to clinically-relevant concentrations of mitoxantrone and a small molecule APE1 inhibitor revealed additive cytotoxicity. These data suggest that in a cellular context, mitoxantrone may interfere with APE1 DNA repair functions.


DNA , Mitoxantrone , Mitoxantrone/pharmacology , DNA/metabolism , DNA Repair , Aldehydes , Phosphates , Endonucleases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
18.
Redox Biol ; 69: 102977, 2024 Feb.
Article En | MEDLINE | ID: mdl-38056311

Ref-1/APE1 (Redox Effector/Apurinic Endonuclease 1) is a multifunctional enzyme that serves as a redox factor for several transcription factors (TFs), e.g., NF-kB, HIF-1α, which in an oxidized state fail to bind DNA. Conversion of these TFs to a reduced state serves to regulate various biological responses such as cell growth, inflammation, and cellular metabolism. The redox activity involves a thiol exchange reaction for which Cys65 (C65) serves as the nucleophile. Using CRISPR editing in human pancreatic ductal adenocarcinoma (PDAC) cells, we changed C65 to Ala (C65A) in Ref-1 to evaluate alteration of Ref-1 redox dynamics as well as chronic loss of Ref-1 redox activity on cell signaling pathways, specifically those regulated by NF-kB and HIF-1α. The redox activity of Ref-1 requires partial unfolding to expose C65, which is buried in the folded structure. Labeling of Ref-1 with polyethylene glycol-maleimide (PEGm) provides a readout of reduced Cys residues in Ref-1 and thereby an assessment of partial unfolding in Ref-1. In comparing Ref-1WT vs Ref-1C65A cell lines, we found an altered distribution of oxidized versus reduced states of Ref-1. Accordingly, activation of NF-kB and HIF-1α in Ref-1C65A lines was significantly lower compared to Ref-1WT lines. The bioinformatic data revealed significant downregulation of metabolic pathways including OXPHOS in Ref-1C65A expressing clones compared to Ref-1WT line. Ref-1C65A also demonstrated reduced cell proliferation and use of tricarboxylic acid (TCA) substrates compared to Ref-1WT lines. A subcutaneous as well as PDAC orthotopic in vivo model demonstrated a significant reduction in tumor size, weight, and growth in the Ref-1C65A lines compared to the Ref-1WT lines. Moreover, mice implanted with Ref-1C65A redox deficient cells demonstrate significantly reduced metastatic burden to liver and lung compared to mice implanted with Ref-1 redox proficient cells. These results from the current study provide direct evidence that the chronic absence of Cys65 in Ref-1 results in redox inactivity of the protein in human PDAC cells, and subsequent biological results confirm a critical involvement of Ref-1 redox signaling and tumorigenic phenotype.


NF-kappa B , Pancreatic Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Cysteine/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , NF-kappa B/metabolism , Oxidation-Reduction , Pancreatic Neoplasms/pathology , Signal Transduction
19.
J Biol Chem ; 300(1): 105503, 2024 Jan.
Article En | MEDLINE | ID: mdl-38013090

Hyperthermophilic organisms thrive in extreme environments prone to high levels of DNA damage. Growth at high temperature stimulates DNA base hydrolysis resulting in apurinic/apyrimidinic (AP) sites that destabilize the genome. Organisms across all domains have evolved enzymes to recognize and repair AP sites to maintain genome stability. The hyperthermophilic archaeon Thermococcus kodakarensis encodes several enzymes to repair AP site damage including the essential AP endonuclease TK endonuclease IV. Recently, using functional genomic screening, we discovered a new family of AP lyases typified by TK0353. Here, using biochemistry, structural analysis, and genetic deletion, we have characterized the TK0353 structure and function. TK0353 lacks glycosylase activity on a variety of damaged bases and is therefore either a monofunctional AP lyase or may be a glycosylase-lyase on a yet unidentified substrate. The crystal structure of TK0353 revealed a novel fold, which does not resemble other known DNA repair enzymes. The TK0353 gene is not essential for T. kodakarensis viability presumably because of redundant base excision repair enzymes involved in AP site processing. In summary, TK0353 is a novel AP lyase unique to hyperthermophiles that provides redundant repair activity necessary for genome maintenance.


DNA-(Apurinic or Apyrimidinic Site) Lyase , Thermococcus , Deoxyribonuclease IV (Phage T4-Induced) , DNA Damage , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Thermococcus/enzymology , Thermococcus/genetics
20.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article En | MEDLINE | ID: mdl-38068959

The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM ("SAR by X-ray Poses Quickly") platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or "undruggable" targets, allows for (i) hit generation; (ii) the mapping of protein-ligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target.


DNA-Directed DNA Polymerase , Drug Discovery , DNA-Directed DNA Polymerase/metabolism , Binding Sites , Endonucleases/metabolism , Crystallography, X-Ray , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
...